Nyctanthes arbor-tristis L.: Perspective of phytochemical-based inhibition of fatty acid biosynthesis in Mycobacterium tuberculosis


Abstract views: 319 / PDF downloads: 162

Authors

  • Subendu Sarkar ESIC Medical College and Hospital, NH-3, NIT, Faridabad, Haryana-121001, India https://orcid.org/0000-0002-0706-6374
  • Rajender Pal Singh Postgraduate Institute of Medical Education and Research, Department of Experimental Medicine and Biotechnology, Chandigarh-160012, India https://orcid.org/0000-0001-5979-1650

DOI:

https://doi.org/10.55484/ijpbp.1049943

Keywords:

Nyctanthes arbor-tristis L., Mycobacterium tuberculosis, Iridoid, Cholesterol, Fatty acid, HMG-CoA reductase

Abstract

Nyctanthes arbor-tristis L. contains various phytochemicals with tremendous potential to fight against different infections. However, the effect of these phytochemicals on Mycobacterium tuberculosis is yet unknown. Treatment of multi-drug resistance (MDR) and extensively drug-resistant (XDR) strains of the tuberculosis bacterium are still challenging. Therefore, there is an urgent need to overcome this problem. The present review focuses on the potential action of the hypolipidemic phytochemicals obtained from N. arbor-tristis on the growth and survival of M. tuberculosis in the human host. The extracts from different parts of this plant are hypolipidemic by various established mechanisms. Phytochemicals like iridoids and flavonoids from plant origin exhibit a high capacity to regulate cholesterol and fatty acid biosynthesis in vivo. The hypolipidemic properties of N. arbor-tristis-derived extracts are probably due to the presence of phytochemicals such as iridoids, flavonoids, etc. It may regulate fatty acid biosynthesis in M. tuberculosis by targeting bacterial fatty acid synthase enzyme. Additionally, these phytochemicals also inhibit cholesterol biosynthesis in the host by interrupting the function of HMG-CoA reductase. M. tuberculosis is an intracellular pathogen. It is also established fact as on date that entry of tuberculosis bacterium in the macrophage is macrophage membrane cholesterol-dependent. Host cholesterol is also otherwise necessary by multiple mechanisms for the pathogenesis of tuberculosis. Based on the above facts, we believe that N. arbor-tristis derived phytochemicals can act both on the tuberculosis bacterium and on the host for prevention and cure of tuberculosis.

References

Agrawal, J., Pal, A., 2013. Nyctanthes arbor-tristis Linn—A critical ethnopharmacological review. Journal of Ethnopharmacology, 146(3), 645-658.

Ahmad, Z., Sharma, S., Khuller, G.K., 2006. The potential of azole antifungals against latent/persistent tuberculosis. FEMS Microbiology Letters, 258(2), 200-203.

Ahmed, K.I., Opu, S.A., Muttaki, A.A., Al-Mamun, M., Islam, M.T., Das, P.R., Rahmatullah, M., 2015. Plant remedies of a unani medicinal practitioner in Bhola district, Bangladesh. World Journal of Pharmacy and Pharmaceutical Sciences, 4, 186-198.

Anand, P.K., Kaul, D., 2005. Downregulation of TACO gene transcription restricts mycobacterial entry/survival within human macrophages. FEMS Microbiology Letters, 250(1), 137-144.

Askun, T., Tekwu, E.M., Satil, F., Modanlioglu, S., Aydeniz, H., 2013. Preliminary antimycobacterial study on selected Turkish plants (Lamiaceae) against Mycobacterium tuberculosis and search for some phenolic constituents. BMC Complementary and Alternative Medicine, 13(1), 1-11.

Aydin, E., Türkez, H., Geyikoğlu, F., 2013. Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells. Biologia, 68(5), 1004-1009.

Baskaran, G., Salvamani, S., Ahmad, S.A., Shaharuddin, N.A., Pattiram, P.D., Shukor, M.Y., 2015. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Design, Development and Therapy, 9, 509-517.

Brown, A.K., Papaemmanouil, A., Bhowruth, V., Bhatt, A., Dover, L.G., Besra, G.S., 2007. Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II. Microbiology, 153(10), 3314-3322.

Bueno-Sánchez, J.G., Martínez-Morales, J.R., Stashenko, E.E., Ribón, W., 2009. Anti-tubercular activity of eleven aromatic and medicinal plants occurring in Colombia. Biomedica, 29(1), 51-60.

Cantrell, C.L., Franzblau, S.G., Fischer, N.H., 2001. Antimycobacterial plant terpenoids. Planta Medica, 67(08), 685-694.

Chang, K.C., Yew, W.W., 2020. ATS/CDC/ERS/IDSA clinical practice guidelines for treatment of drug-resistant tuberculosis: a two-edged sword?. American Journal of Respiratory and Critical Care Medicine, 202(5), 777-778.

Chaudhary, S., Gupta, R.K., Kumar, A., Tarazi, H., 2018. Hepatoprotective and antioxidant potential of Nyctanthes arbor-tristis L. leaves against antitubercular drugs induced hepatotoxicity. Journal of Pharmacy & Pharmacognosy Research, 6(3), 205-215.

Chen, J., Zhuang, D., Cai, W., Xu, L., Li, E., Wu, Y., Sugiyama, K., 2009. Inhibitory effects of four plants flavonoids extracts on fatty acid synthase. Journal of Environmental Sciences (China), 21, S131-S134.

Ciccarelli, L., Connell, S.R., Enderle, M., Mills, D.J., Vonck, J., Grininger, M., 2013. Structure and conformational variability of the Mycobacterium tuberculosis fatty acid synthase multienzyme complex. Structure, 21(7), 1251-1257.

Cole, S., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Barrell, B.G., 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 396(6707), 190-190.

Daniel, J., Maamar, H., Deb, C., Sirakova, T.D., Kolattukudy, P.E., 2011. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathogens, 7(6), e1002093.

Debnath, P.K., Chattopadhyay, J., Mitra, A., Adhikari, A., Alam, M.S., Bandopadhyay, S.K., Hazra, J., 2012. Adjunct therapy of Ayurvedic medicine with anti tubercular drugs on the therapeutic management of pulmonary tuberculosis. Journal of Ayurveda and Integrative Medicine, 3(3), 141-149.

Dinda, B., Debnath, S., Harigaya, Y., 2007. Naturally occurring iridoids. A review, part 1. Chemical and Pharmaceutical Bulletin, 55(2), 159-222.

Dooley, K.E., Chaisson, R.E., 2009. Tuberculosis and diabetes mellitus: convergence of two epidemics. The Lancet Infectious Diseases, 9(12), 737-746.

Duan, C., Wang, Y., Ma, X., Jiang, Y., Liu, J., Tu, P., 2012. A new furostanol glycoside with fatty acid synthase inhibitory activity from Ophiopogon japonicusa. Chemistry of Natural Compounds, 48(4), 613-615.

Duraipandiyan, V., Al-Dhabi, N.A., Irudayaraj, S.S., Sunil, C., 2016. Hypolipidemic activity of friedelin isolated from Azima tetracantha in hyperlipidemic rats. Revista Brasileira de Farmacognosia, 26, 89-93.

Eichinger, D., Bacher, A., Zenk, M.H., Eisenreich, W., 1999. Analysis of metabolic pathways via quantitative prediction of isotope labeling patterns: a retrobiosynthetic 13C NMR study on the monoterpene loganin. Phytochemistry, 51(2), 223-236.

Ekeanyanwu, R.C., Njoku, O.U., 2014. Acute and subacute oral toxicity study on the flavonoid rich fraction of Monodora tenuifolia seed in albino rats. Asian Pacific Journal of Tropical Biomedicine, 4(3), 194-202.

Endo, A., 2010. A historical perspective on the discovery of statins. Proceedings of the Japan Academy, Series B, 86(5), 484-493.

Esmaillzadeh, A., Tahbaz, F., Gaieni, I., Alavi-Majd, H., Azadbakht, L., 2006. Cholesterol-lowering effect of concentrated pomegranate juice consumption in type II diabetic patients with hyperlipidemia. International Journal for Vitamin and Nutrition Research, 76(3), 147-151.

Falcone Ferreyra, M.L., Rius, S., Casati, P., 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3, 222.

Fuerst, J.A., Sagulenko, E., 2014. Towards understanding the molecular mechanism of the endocytosis-like process in the bacterium Gemmata obscuriglobus. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843(8), 1732-1738.

Gatfield, J., Pieters, J., 2000. Essential role for cholesterol in entry of mycobacteria into macrophages. Science, 288(5471), 1647-1651.

Gebhardt, R., 1998. Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. Journal of Pharmacology and Experimental Therapeutics, 286(3), 1122-1128.

Golomb, B.A., Evans, M.A., 2008. Statin adverse effects: A review of the literature and evidence for a mitochondrial mechanism. American Journal of Cardiovascular Drugs, 8(6), 373-418.

Gordien, A.Y., Gray, A.I., Franzblau, S.G., Seidel, V., 2009. Antimycobacterial terpenoids from Juniperus communis L.(Cuppressaceae). Journal of Ethnopharmacology, 126(3), 500-505.

Gould, T.A., Van De Langemheen, H., Muñoz‐Elías, E.J., McKinney, J.D., Sacchettini, J.C., 2006. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Molecular Microbiology, 61(4), 940-947.

Grzegorzewicz, A.E., Korduláková, J., Jones, V., Born, S.E., Belardinelli, J.M., Vaquié, A., Jackson, M., 2012a. A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. Journal of Biological Chemistry, 287(46), 38434-38441.

Grzegorzewicz, A.E., Pham, H., Gundi, V.A., Scherman, M.S., North, E.J., Hess, T., Jackson, M., 2012b. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nature Chemical Biology, 8(4), 334-341.

Gupta, P., Bajpai, S.K., Chandra, K., Singh, K.L., Tandon, J.S., 2005. Antiviral profile of Nyctanthes arbortristis L. against encephalitis causing viruses. Indian Journal of Experimental Biology, 43, 1156-1160.

Gupta, R., Thakur, B., Singh, P., Singh, H.B., Sharma, V.D., Katoch, V.M., Chauhan, S.V.S., 2010. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian Journal of Medical Research, 131(6), 809-813.

Harwood, H.J., Greene, Y.J., Stacpoole, P.W., 1986. Inhibition of human leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by ascorbic acid. An effect mediated by the free radical monodehydroascorbate. Journal of Biological Chemistry, 261(16), 7127-7135.

Ikonen, E., 2008. Cellular cholesterol trafficking and compartmentalization. Nature Reviews Molecular Cell Biology, 9(2), 125-138.

Itoh, M., Hiwatashi, K., Abe, Y., Kimura, F., Toshima, G., Takahashi, J., Hata, K., 2009. Lupeol reduces triglyceride and cholesterol synthesis in human hepatoma cells. Phytochemistry Letters, 2(4), 176-178.

Jimenez-Arellanes, A., Luna-Herrera, J., Cornejo-Garrido, J., López-García, S., Castro-Mussot, M.E., Meckes-Fischer, M., Hernández-Pando, R., 2013. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC Complementary and Alternative Medicine, 13(1), 1-11.

Joshi, J.M., 2011. Tuberculosis chemotherapy in the 21st century: Back to the basics. Lung India: Official Organ of Indian Chest Society, 28(3), 193-200.

Kang, J., Guo, C., Thome, R., Yang, N., Zhang, Y., Li, X., Cao, X., 2018. Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from Corni fructus: Possible involvement of the PI3K–Akt/PKB signaling pathway. RSC Advances, 8(53), 30539-30549.

Kazuhiko, T., Masao, K., Akira, E., 1977. Time-dependent, irreversible inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by the antibiotic citrinin. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 488(1), 97-101.

Khanna, A.K., Chander, R., Kapoor, N.K., Dhawan, B.N., 1994. Hypolipedaemic activity of picroliv in albino rats. Phytotherapy Research, 8(7), 403-407.

Khatune, N.A., Mosaddik, M.A., Haque, M.E., 2001. Antibacterial activity and cytotoxicity of Nyctanthes arbor-tristis flowers. Fitoterapia, 72(4), 412-414.

Kim, H., Mok, J.H., Kang, B., Lee, T., Lee, H.K., Jang, H.J., Jeon, D., 2019. Trend of multidrug and fluoroquinolone resistance in Mycobacterium tuberculosis isolates from 2010 to 2014 in Korea: a multicenter study. The Korean Journal of Internal Medicine, 34(2), 344-352.

Kirmizibekmez, H., Çalıs, I., Perozzo, R., Brun, R., Dönmez, A.A., Linden, A., Tasdemir, D., 2004. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP reductase, a crucial enzyme in fatty acid biosynthesis. Planta Medica, 70(8), 711-717.

Korf, J., Stoltz, A., Verschoor, J., De Baetselier, P., Grooten, J., 2005. The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen‐associated host innate immune responses. European Journal of Immunology, 35(3), 890-900.

Kul, P.G., Buddhi, B.C., Mamata, B., Laxman, B., 2015. Anti-microbial and anti-diabetic activity of Nyctanthes arbor-tristis. World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS), 4(5), 1031-1040.

Kumar, P., Singh, A., Sharma, U., Singh, D., Dobhal, M.P., Singh, S., 2013. Anti-mycobacterial activity of plumericin and isoplumericin against MDR Mycobacterium tuberculosis. Pulmonary Pharmacology & Therapeutics, 26(3), 332-335.

Lawal, I.O., Grierson, D.S., Afolayan, A.J., 2014. Phytotherapeutic information on plants used for the treatment of tuberculosis in Eastern Cape Province, South Africa. Evidence-Based Complementary and Alternative Medicine, 2014, 735423.

Lee, W., VanderVen, B.C., Fahey, R.J., Russell, D.G., 2013. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. Journal of Biological Chemistry, 288(10), 6788-6800.

Li, P., Tian, W., Wang, X., Ma, X., 2014. Inhibitory effect of desoxyrhaponticin and rhaponticin, two natural stilbene glycosides from the Tibetan nutritional food Rheum tanguticum Maxim. ex Balf., on fatty acid synthase and human breast cancer cells. Food & Function, 5(2), 251-256.

Lobato, L.S., Rosa, P.S., Ferreira, J.D.S., Neumann, A.D.S., da Silva, M.G., do Nascimento, D.C., Lara, F.A., 2014. Statins increase rifampin mycobactericidal effect. Antimicrobial Agents and Chemotherapy, 58(10), 5766-5774.

Manjelievskaia, J., Erck, D., Piracha, S., Schrager, L., 2016. Drug-resistant TB: deadly, costly and in need of a vaccine. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110(3), 186-191.

Mariita, R., Ogol, C.K.P.O., Oguge, N., Okemo, P., 2010. Antitubercular and phytochemical investigation of methanol extracts of medicinal plants used by the Samburu community in Kenya. Tropical Journal of Pharmaceutical Research, 9(4), 379-385.

McIlleron, H., Wash, P., Burger, A., Norman, J., Folb, P.I., Smith, P., 2006. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrobial Agents and Chemotherapy, 50(4), 1170-1177.

Mensink, R.P., 2005. Effects of stearic acid on plasma lipid and lipoproteins in humans. Lipids, 40(12), 1201-1205.

Middleton, B., Kok-Pheng, H., 1982. Inhibition of hepatic S-3-hydroxy-3-methylglutaryl-CoA reductase and in vivo rates of lipogenesis by a mixture of pure cyclic monoterpenes. Biochemical Pharmacology, 31(18), 2897-2901.

Miner, M.D., Chang, J.C., Pandey, A.K., Sassetti, C.M., Sherman, D.R., 2009. Role of cholesterol in Mycobacterium tuberculosis infection. Indian Journal of Experimental Biology, 47, 407-411.

Mishra, V., Shukla, A., Pandeti, S., Barthwal, M.K., Pandey, H.P., Palit, G., Narender, T., 2013. Arbortristoside-A and 7-O-trans-cinnamoyl-6β-hydroxyloganin isolated from Nyctanthes arbortristis possess anti-ulcerogenic and ulcer-healing properties. Phytomedicine, 20(12), 1055-1063.

Miyake, Y., Suzuki, E., Ohya, S., Fukumoto, S., Hiramitsu, M., Sakaida, K., Furuichi, Y., 2006. Lipid‐lowering effect of eriocitrin, the main flavonoid in lemon fruit, in rats on a high‐fat and high‐cholesterol diet. Journal of Food Science, 71(9), S633-S637.

Morbidoni, H.R., Vilchèze, C., Kremer, L., Bittman, R., Sacchettini, J.C., Jacobs Jr, W.R., 2006. Dual inhibition of mycobacterial fatty acid biosynthesis and degradation by 2-alkynoic acids. Chemistry & Biology, 13(3), 297-307.

Muñoz-Elías, E.J., McKinney, J.D., 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nature Medicine, 11(6), 638-644.

Murti, K., Kaushik, M., Kaushik, A., 2012. Evaluation of hyypoglycemic and hypolipidemic activity of Nyctanthes arbortristis linn against streptozotocin induced diabetic rats. American Journal of Pharmacology and Toxicology, 7(1), 8-11.

Ngo, S.C., Zimhony, O., Chung, W.J., Sayahi, H., Jacobs Jr, W.R., Welch, J.T., 2007. Inhibition of isolated Mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrobial Agents and Chemotherapy, 51(7), 2430-2435.

Omar, S.H., 2010. Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica, 78(2), 133-154. Ouellet, H., Johnston, J.B., de Montellano, P.R.O., 2011. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends in Microbiology, 19(11), 530-539.

Pahan, K., 2006. Lipid-lowering drugs. Cellular and Molecular Life Sciences CMLS, 63(10), 1165-1178.

Palu, A.K., Brown, A., Deng, S., Norman, K., West, B., 2012. The Effects of Noni (Morinda citrifolia L.) Fruit Juice on Cholesterol Levels: A Mechanistic Investigation and an Open Label Pilot Study. Journal of Applied Pharmaceutical Science, 2, 25-30.

Pandey, A.K., Sassetti, C.M., 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proceedings of the National Academy of Sciences, 105(11), 4376-4380.

Parihar, S.P., Guler, R., Khutlang, R., Lang, D.M., Hurdayal, R., Mhlanga, M.M., Brombacher, F., 2014. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. The Journal of Infectious Diseases, 209(5), 754-763.

Pattanayak, M., Seth, P.K., Smita, S., Gupta, S.K., 2009. Geraniol and limonene interaction with 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase for their role as cancer chemo-preventive agents. Journal of Proteomics & Bioinformatics, 2, 466-474.

Podust, L.M., Yermalitskaya, L.V., Lepesheva, G.I., Podust, V.N., Dalmasso, E.A., Waterman, M.R., 2004. Estriol bound and ligand-free structures of sterol 14α-demethylase. Structure, 12(11), 1937-1945.

Rahman, M.M., Rokeya, B., Shahjahan, M., Ahmed, T., Roy, S.K., Ali, L., 2013. Hypoglycemic Effect of Nyctanthes arbortristis Linn Extracts in Normal and Streptozotocin-Induced Diabetic Rats. Malaysian Journal of Pharmaceutical Sciences, 11(1), 21-31.

Rangika, B.S., Dayananda, P.D., Peiris, D.C., 2015. Hypoglycemic and hypolipidemic activities of aqueous extract of flowers from Nycantus arbor-tristis L. in male mice. BMC Complementary and Alternative Medicine, 15(1), 1-9.

Rani, C., Chawla, S., Mangal, M., Mangal, A.K., Kajla, S., Dhawan, A.K., 2012. Nyctanthes arbor-tristis Linn. (Night Jasmine): A sacred ornamental plant with immense medicinal potentials. Indian Journal of Traditional Knowledge, 11, 427-435.

Rathod, N., Raghuveer, I., Chitme, H.R., Ramesh, C., 2009. Prevention of high-fructose diet induced insulin resistance by Nyctanthes arbortristis and Calotropis gigantea in rats. Pharmacognosy Magazine, 5(19), 58-63.

Rathore, A., Rivastava, V., Srivastava, K.C., Tandon, J.S., 1990. Iridoid glucosides from Nyctanthes arbor-tristis. Phytochemistry, 29(6), 1917-1920.

Reddy Palvai, V., Urooj, A., 2014. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (ex vivo) by Morus indica (Mulberry). Chinese Journal of Biology, 2014, 318561.

Roza, J.M., Xian-Liu, Z., Guthrie, N., 2007. Effect of citrus flavonoids and tocotrienols on serum cholesterol levels in hypercholesterolemic subjects. Alternative Therapies in Health & Medicine, 13(6), 44-48.

Russell, D.G., 2003. Phagosomes, fatty acids and tuberculosis. Nature Cell Biology, 5(9), 776-778.

Sah, A.K., Verma, V.K., 2012. Phytochemicals and pharmacological potential of Nyctanthes arbor-tristis: A comprehensive review. International Journal of Research in Pharmaceutical and Biomedical Sciences, 3(1), 420-427.

Saukkonen, J.J., Cohn, D.L., Jasmer, R.M., Schenker, S., Jereb, J.A., Nolan, C.M., Sterling, T.R., 2006. An official ATS statement: hepatotoxicity of antituberculosis therapy. American Journal of Respiratory and Critical Care Medicine, 174(8), 935-952.

Schafer, G., Guler, R., Murray, G., Brombacher, F., Brown, G.D., 2009. The role of scavenger receptor B1 in infection with Mycobacterium tuberculosis in a murine model. PloS One, 4(12), e8448.

Schroeder, E.K., de Souza, O.N., Santos, D.S., Blanchard, J.S., Basso, L.A., 2002. Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis. Current Pharmaceutical Biotechnology, 3(3), 197-225.

Sheeba, D.G., Gomathi, K.S., Citarasu, D., 2015. Anti-mycobacterial and phytochemical investigation of methanol extracts of few medicinal plants. Journal of Chemical and Pharmaceutical Sciences, 8, 480-486.

Shukla, P., Sharma, A., 2021. Effect of some medicinal plants on growth of Mycobacterium tuberculosis, multi drug resistant Mycobacterium tuberculosis and Mycobacterium other than tuberculosis. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 199-201.

Sivakumar, A., Jayaraman, G., 2011. Anti-tuberculosis activity of commonly used medicinal plants of south India. Journal of Medicinal Plants Research, 5(31), 6881-6884.

Sullivan, T., Amor, Y.B., 2016. Global introduction of new multidrug-resistant tuberculosis drugs—Balancing regulation with urgent patient needs. Emerging Infectious Diseases, 22(3), e151228.

Sundaram, R., Shanthi, P., Sachdanandam, P., 2013. Effect of iridoid glucoside on plasma lipid profile, tissue fatty acid changes, inflammatory cytokines, and GLUT4 expression in skeletal muscle of streptozotocin-induced diabetic rats. Molecular and Cellular Biochemistry, 380(1), 43-55.

Takayama, K., Wang, C., Besra, G.S., 2005. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clinical Microbiology Reviews, 18(1), 81-101.

Tandon, J.S., Srivastava, V., Guru, P.Y., 1991. Iridoids: a new class of leishmanicidal agents from Nyctanthes arbortristis. Journal of Natural Products, 54(4), 1102-1104.

Tasdemir, D., Güner, N.D., Perozzo, R., Brun, R., Dönmez, A.A., Calıs, I., Rüedi, P., 2005. Anti-protozoal and plasmodial FabI enzyme inhibiting metabolites of Scrophularia lepidota roots. Phytochemistry, 66(3), 355-362.

Veen, J., 1995. Drug resistant tuberculosis: back to sanatoria, surgery and cod-liver oil?. European Respiratory Journal, 8(7), 1073-1075.

Wang, M.Y., Peng, L., Weidenbacher-Hoper, V., Deng, S., Anderson, G., West, B.J., 2012. Noni juice improves serum lipid profiles and other risk markers in cigarette smokers. The Scientific World Journal, 2012, 594657.

West, B.J., Jensen, C.J., Palu, A.K., Deng, S., Wasden, J.A., 2014. Morinda citrifolia and iridoid based formulations. U.S. Patent No. 8790727. Washington, DC: U.S. Patent and Trademark Office.

WHO (World Health Organization), 2021. Tuberculosis. https://www.who.int/news-room/fact-sheets/detail/tuberculosis; 2021, Accessed 16 December 2021.

Wright, T.C., Cant, J.P., McBride, B.W., 2002. Inhibition of fatty acid synthesis in bovine mammary homogenate by palmitic acid is not a detergent effect. Journal of Dairy Science, 85(3), 642-647.

Yamabe, N., Kang, K.S., Matsuo, Y., Tanaka, T., Yokozawa, T., 2007. Identification of antidiabetic effect of iridoid glycosides and low molecular weight polyphenol fractions of Corni fructus, a constituent of Hachimi-jio-gan, in streptozotocin-induced diabetic rats. Biological and Pharmaceutical Bulletin, 30(7), 1289-1296.

Yamabe, N., Noh, J.S., Park, C.H., Kang, K.S., Shibahara, N., Tanaka, T., Yokozawa, T., 2010. Evaluation of loganin, iridoid glycoside from Corni fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. European Journal of Pharmacology, 648(1-3), 179-187.

Yang, R.M., Liu, F., He, Z.D., Ji, M., Chu, X.X., Kang, Z.Y., Gao, N.N., 2015. Anti-obesity effect of total phenylpropanoid glycosides from Ligustrum robustum Blume in fatty diet-fed mice via up-regulating leptin. Journal of Ethnopharmacology, 169, 459-465.

Yew, W.W., Lange, C., Leung, C.C., 2010. Treatment of tuberculosis: update 2010. European Respiratory Journal, 37, 441-462.

Zhang, S.Y., Zheng, C.G., Yan, X.Y., Tian, W.X., 2008. Low concentration of condensed tannins from catechu significantly inhibits fatty acid synthase and growth of MCF-7 cells. Biochemical and Biophysical Research Communications, 371(4), 654-658.

Zheng, Y., Jiang, X., Gao, F., Song, J., Sun, J., Wang, L., Zhang, H., 2014. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC Complementary and Alternative Medicine, 14(1), 400.

Downloads

Published

05.03.2022

How to Cite

Sarkar, S., & Singh, R. P. (2022). Nyctanthes arbor-tristis L.: Perspective of phytochemical-based inhibition of fatty acid biosynthesis in Mycobacterium tuberculosis. International Journal of Plant Based Pharmaceuticals, 2(2), 166–175. https://doi.org/10.55484/ijpbp.1049943

Issue

Section

Reviews