Assessment of apigenin-7-glucoside and luteolin-7-glucoside as multi-targeted agents against Alzheimer's disease: a molecular docking study


Abstract views: 250 / PDF downloads: 110

Authors

DOI:

https://doi.org/10.62313/ijpbp.2021.7

Keywords:

Alzheimer’s disease, AChE, BChE, Amyloid precursor protein, β-amyloid peptide, Molecular docking

Abstract

Although the incidence of Alzheimer's disease (AD) is increasing in society, unfortunately, no definite progress has been made in treating this disease yet. In this study, the potential of apigenin-7-glucoside (A7G) and luteolin-7-glucoside (L7G) to be used as multi-targeted agents in AD was investigated by molecular docking calculations against the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), amyloid precursor protein (APP) and 42-residue beta-amyloid peptide (Aβ). A7G and L7G exhibited very high binding affinity (-9.42 and -9.60 kcal/mol for A7G; -9.30 and -9.90 kcal/mol for L7G) to AChE and BChE, respectively, while the affinities of these two flavonoid glycosides towards APP and Aβ peptide (-6.10 and -6.0 kcal/mol for A7G; -6.30 and -6.10 kcal/mol for L7G) were moderately strong. Compared to rivastigmine, A7G and L7G exhibited a highly significant binding affinity, even stronger than rivastigmine, for AChE and BChE. Although A7G showed a more drug-like physicochemical character than L7G, both ligands were within the normal range for ADMET and did not show high affinity for cellular proteins, according to the results of SwissTarget analysis. According to the STITCH interaction analysis, both ligands had the potential to inhibit enzymes predominantly in the inflammatory pathway (ADIPOQ, NOS1, NOS2 and NOS3). As a result, A7G and L7G exhibit multi-targeted agent properties in AD. Our results should also be verified by experimental enzyme inhibition studies, which may be performed simultaneously on AChE, BChE, APP, and Aβ peptides.

References

Airoldi, C., La Ferla, B., D'Orazio, G., Ciaramelli, C., Palmioli, A., 2018. Flavonoids in the treatment of Alzheimer's and other neurodegenerative diseases. Current Medicinal Chemistry, 25(27), 3228-3246. DOI: https://doi.org/10.2174/0929867325666180209132125

Ali, M.Y., Jannat, S., Edraki, N., Das, S., Chang, W.K., Kim, H.C., Park, S.K., Chang, M.S., 2019. Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway. Chemico-Biological Interactions, 309, 108707. DOI: https://doi.org/10.1016/j.cbi.2019.06.020

Álvarez Rojas, A., Moreno Mauro, R.D., Garrido, J., 1996. Acetylcholinesterase Accelerates Assembly of Amyloid-B-Peptides Into Alzheimer's Fibrils: Possible Role of the Peripheral Site of the Enzyme. Neuron, 16(4), 881-891. DOI: https://doi.org/10.1016/S0896-6273(00)80108-7

Anderson, J.P., Chen, Y., Kim, K.S., Robakis, N.K., 1992. An alternative secretase cleavage produces soluble Alzheimer amyloid precursor protein containing a potentially amyloidogenic sequence. Journal of Neurochemistry, 59(6), 2328-2331. DOI: https://doi.org/10.1111/j.1471-4159.1992.tb10128.x

Burns, A., Iliffe, S., 2009. Alzheimer’s disease. BMJ 338, b158. DOI: https://doi.org/10.1136/bmj.b158

Carvajal, F.J., Inestrosa, N.C., 2011. Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Frontiers in Molecular Neuroscience, 4, 19. DOI: https://doi.org/10.3389/fnmol.2011.00019

Chandran, U., Mehendale, N., Tillu, G., Patwardhan, B., 2015. Network Pharmacology of Ayurveda Formulation Triphala with Special Reference to Anti-Cancer Property. Comb Chem High Throughput Screen, 18(9), 846-854. DOI: https://doi.org/10.2174/1386207318666151019093606

Daina, A., Michielin, O., Zoete, V., 2019. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357-W364. DOI: https://doi.org/10.1093/nar/gkz382

Darvesh, S., Cash, M.K., Reid, G.A., Martin, E., Mitnitski, A., Geula, C., 2012. Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. Journal of Neuropathology & Experimental Neurology, 71(1), 2-14. DOI: https://doi.org/10.1097/NEN.0b013e31823cc7a6

Dinamarca, M.C., Sagal, J.P., Quintanilla, R.A., Godoy, J.A., Arrázola, M.S., Inestrosa, N.C., 2010. Amyloid-β-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Aβ peptide. Implications for the pathogenesis of Alzheimer's disease. Molecular Neurodegeneration, 5(1), 1-15. DOI: https://doi.org/10.1186/1750-1326-5-4

Ferri, C.P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y., 2005. Global prevalence of dementia: a Delphi consensus study. The Lancet, 366(9503), 2112-2117. DOI: https://doi.org/10.1016/S0140-6736(05)67889-0

Francis, P.T., Palmer, A.M., Snape, M., Wilcock, G.K., 1999. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry, 66(2), 137-147. DOI: https://doi.org/10.1136/jnnp.66.2.137

Gabuzda, D., Busciglio, J., Chen, L.B., Matsudaira, P., Yankner, B.A., 1994. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. Journal of Biological Chemistry, 269(18), 13623-13628. DOI: https://doi.org/10.1016/S0021-9258(17)36875-8

Greig, N.H., Lahiri, D.K., Sambamurti, K., 2002. Butyrylcholinesterase: an important new target in Alzheimer's disease therapy. International Psychogeriatrics, 14(S1), 77-91. DOI: https://doi.org/10.1017/S1041610203008676

Guzzi, C., Colombo, L., Luigi, A.D., Salmona, M., Nicotra, F., Airoldi, C., 2017. Flavonoids and Their Glycosides as Anti‐amyloidogenic Compounds: Aβ1–42 Interaction Studies to Gain New Insights into Their Potential for Alzheimer's Disease Prevention and Therapy. Chemistry–An Asian Journal, 12(1), 67-75. DOI: https://doi.org/10.1002/asia.201601291

Haass, C., Schlossmacher, M.G., Hung, A.Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B.L., Lieberburg, I., Koo, E.H., Schenk, D., Teplow, D.B., 1992. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature, 359(6393), 322-325. DOI: https://doi.org/10.1038/359322a0

Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., 2012. Avogadro: an open-source molecular builder and visualization tool. Journal of Cheminformatics, 4, 17. DOI: https://doi.org/10.1186/1758-2946-4-17

Hardy, J., Allsop, D., 1991. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends in Pharmacological Sciences, 12, 383-388. DOI: https://doi.org/10.1016/0165-6147(91)90609-V

Hsu, F., Park, G., Guo, Z., 2018. Key residues for the formation of Aβ42 amyloid fibrils. ACS Omega, 3(7), 8401-8407. DOI: https://doi.org/10.1021/acsomega.8b00887

Inestrosa, N.C., Sagal, J.P., Colombres, M., 2005. Acetylcholinesterase interaction with Alzheimer amyloid β. Alzheimer’s Disease, 38, 299-317. DOI: https://doi.org/10.1007/0-387-23226-5_15

Istifli, E.S., 2021. Chemical Composition, Antioxidant and Enzyme Inhibitory Activities of Onosma bourgaei and Onosma trachytricha and in Silico Molecular Docking Analysis of Dominant Compounds. Molecules, 26(10), 2981. DOI: https://doi.org/10.3390/molecules26102981

Istifli, E.S., Sihoglu Tepe, A., Sarikurkcu, C., Tepe, B., 2021. Investigation of molecular interactions between some hydroxybenzoic and hydroxycinnamic acids and the receptor binding site (RBD) of 2019-nCoV spike protein and host proteases [transmembrane protease, serin 2 (TMPRSS2), cathepsin B and cathepsin L] by in silico analysis. International Journal of Secondary Metabolite, 8(3), 246-271.

Li, B., Stribley, J.A., Ticu, A., Xie, W., Schopfer, L.M., Hammond, P., Brimijoin, S., Hinrichs, S.H., Lockridge, O., 2000. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. Journal of Neurochemistry, 75(3), 1320-1331. DOI: https://doi.org/10.1046/j.1471-4159.2000.751320.x

Li, H., Robertson, A.D., Jensen, J.H., 2005. Very fast empirical prediction and rationalization of protein pKa values. Proteins, 61(4), 704-721. DOI: https://doi.org/10.1002/prot.20660

Liu, F., Xu, K., Xu, Z., de Las Rivas, M., Wang, C., Li, X., Lu, J., Zhou, Y., Delso, I., Merino, P., 2017. The small molecule luteolin inhibits N-acetyl-α-galactosaminyltransferases and reduces mucin-type O-glycosylation of amyloid precursor protein. Journal of Biological Chemistry, 292(52), 21304-21319. DOI: https://doi.org/10.1074/jbc.M117.814202

Nathan, C., Calingasan, N., Nezezon, J., Ding, A., Lucia, M.S., La Perle, K., Fuortes, M., Lin, M., Ehrt, S., Kwon, N.S., 2005. Protection from Alzheimer's-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. Journal of Experimental Medicine, 202(9), 1163-1169. DOI: https://doi.org/10.1084/jem.20051529

O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R., 2011. Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. DOI: https://doi.org/10.1186/1758-2946-3-33

Patil, C.S., Singh, V.P., Satyanarayan, P., Jain, N.K., Singh, A., Kulkarni, S.K., 2003. Protective effect of flavonoids against aging-and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology, 69(2), 59-67. DOI: https://doi.org/10.1159/000072357

Pires, D.E., Blundell, T.L., Ascher, D.B., 2015. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072. DOI: https://doi.org/10.1021/acs.jmedchem.5b00104

Qin, L., Chen, Z., Yang, L., Shi, H., Wu, H., Zhang, B., Zhang, W., Xu, Q., Huang, F., Wu, X., 2019. Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice. Toxicology, 426, 152256. DOI: https://doi.org/10.1016/j.tox.2019.152256

Salehi, B., Venditti, A., Sharifi-Rad, M., Kregiel, D., Sharifi-Rad, J., Durazzo, A., Lucarini, M., Santini, A., Souto, E.B., Novellino, E., Antolak, H., Azzini, E., Setzer, W.N., Martins, N., 2019. The Therapeutic Potential of Apigenin. International Journal of Molecular Sciences, 20(6). DOI: https://doi.org/10.3390/ijms20061305

Seubert, P., Oltersdorf, T., Lee, M.G., Barbour, R., Blomquist, C., Davis, D.L., Bryant, K., Fritz, L.C., Galasko, D., Thal, L.J., 1993. Secretion of β-amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide. Nature, 361(6409), 260-263. DOI: https://doi.org/10.1038/361260a0

Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Schiossmacher, M., Whaley, J., Swindlehurst, C., 1992. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature, 359(6393), 325-327. DOI: https://doi.org/10.1038/359325a0

Spoerri, L., Vella, L.J., Pham, C.L., Barnham, K.J., Cappai, R., 2012. The amyloid precursor protein copper binding domain histidine residues 149 and 151 mediate APP stability and metabolism. Journal of Biological Chemistry, 287(32), 26840-26853. DOI: https://doi.org/10.1074/jbc.M112.355743

Sun, X., Chen, W.-D., Wang, Y.-D., 2015. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Frontiers in Pharmacology, 6, 221. DOI: https://doi.org/10.3389/fphar.2015.00221

Trott, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. DOI: https://doi.org/10.1002/jcc.21334

Tundis, R., Bonesi, M., Menichini, F., Loizzo, M.R., Conforti, F., Statti, G., Pirisi, F.M., Menichini, F., 2012. Antioxidant and anti-cholinesterase activity of Globularia meridionalis extracts and isolated constituents. Natural Product Communications, 7(8), 1934578X1200700814. DOI: https://doi.org/10.1177/1934578X1200700814

Valdes-Tresanco, M.S., Valdes-Tresanco, M.E., Valiente, P.A., Moreno, E., 2020. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biology Direct, 15(1), 12. DOI: https://doi.org/10.1186/s13062-020-00267-2

Zhao, L., Wang, J.-L., Liu, R., Li, X.-X., Li, J.-F., Zhang, L., 2013. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules, 18(8), 9949-9965. DOI: https://doi.org/10.3390/molecules18089949

Downloads

Published

10.08.2021

How to Cite

Istifli, E. S., & Sarikurkcu, C. (2021). Assessment of apigenin-7-glucoside and luteolin-7-glucoside as multi-targeted agents against Alzheimer’s disease: a molecular docking study. International Journal of Plant Based Pharmaceuticals, 1(1), 56–64. https://doi.org/10.62313/ijpbp.2021.7

Issue

Section

Research Articles